de Rham cohomology of local cohomology modules: The graded case
نویسندگان
چکیده
منابع مشابه
Asymptotic behaviour of graded components of local cohomology modules
This article has no abstract.
متن کاملEffective de Rham Cohomology - The General Case
Grothendieck has proved that each class in the de Rham cohomology of a smooth complex affine variety can be represented by a differential form with polynomial coefficients. We prove a single exponential bound on the degrees of these polynomials for varieties of arbitrary dimension. More precisely, we show that the p-th de Rham cohomology of a smooth affine variety of dimension m and degree D ca...
متن کاملCrystalline Cohomology and De Rham Cohomology
The goal of this short paper is to give a slightly different perspective on the comparison between crystalline cohomology and de Rham cohomology. Most notably, we reprove Berthelot’s comparison result without using pd-stratifications, linearisations, and pd-differential operators. Crystalline cohomology is a p-adic cohomology theory for varieties in characteristic p created by Berthelot [Ber74]...
متن کاملFrobenius actions on the de Rham cohomology of Drinfeld modules
We study the action of endomorphisms of a Drinfeld A-module φ on its de Rham cohomology HDR(φ,L) and related modules, in the case where φ is defined over a field L of finite Acharacteristic p. Among others, we find that the nilspace H0 of the total Frobenius FrDR on HDR(φ,L) has dimension h = height of φ. We define and study a pairing between the p-torsion pφ of φ and HDR(φ,L), which becomes pe...
متن کاملAlgebraic de Rham cohomology
Before we continue, we need to point out some properties of algebraic de Rham cohomology. In other words, we will first prove some of the axioms before introducing the trace map and cohomology classes. Note that the axioms of a Weil cohomology theory do not provide for the existence of cohomology groups defined for nonprojective varieties, but that we may use the fact that they are defined for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 2015
ISSN: 0027-7630,2152-6842
DOI: 10.1215/00277630-2857430